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Finite size scaling of domain chaos
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Numerical studies of the domain chaos state in a model of rotating Rayleigh-Be´nard convection suggest that
finite size effects may account for the discrepancy between experimentally measured values of the correlation
length and the predicted divergence near onset.

DOI: 10.1103/PhysRevE.63.045201 PACS number~s!: 05.45.2a
ive
an
d
ew
ic
rg
ca

sp
d
th
a
nt
re
.
th
ta

n
ui
nd
e

to
cy
la
lly
to
ti
r

lue
e

a
at
r

e

bl
xis
f
i-

ce
first
ted

e to
nd,
a
e of
o-

e it
ere
non-
oxi-
ss

ate,

at
des
-
pli-
e
ts

n
e
ral
the

s
lls.

he
e

nti-
Spatiotemporal chaos is the name given to states in dr
nonequilibrium systems that are disordered in space
show chaotic time dynamics. The usual diagnostic tools
veloped for chaotic dynamics in nonlinear systems with f
dynamical degrees of freedom focus on the geometr
structures in the phase space of the dynamics. These la
lose their appeal for the very high dimensional dynami
systems of spatiotemporal chaos. The questions of how
characterize, understand, and predict the properties of
tiotemporally chaotic systems remain poorly understood,
spite much experimental and theoretical attention over
past decade. Given this lack of understanding it is import
to study systems which are favorable for both experime
and theoretical study, and in particular ones where theo
cal predictions can be made and tested experimentally
this Rapid Communication we present results that further
comparison between theory and experiment for the s
known as domain chaos@1# in rotating Rayleigh-Be´nard con-
vection.

Rayleigh-Bénard convection has long served as a cano
cal example of pattern formation in systems far from eq
librium. A fluid confined between two horizontal plates a
driven thermally by maintaining the bottom plate at a high
temperature than the top plate undergoes an instability
state in which there is fluid motion driven by the buoyan
forces induced by the thermal expansion. Far away from
eral boundaries the structure of the fluid motion loca
forms the familiar convection rolls with a diameter close
the depth of the cell. This spontaneous formation of spa
structure in a uniformly driven system is known as patte
formation.

The instability to the roll state occurs at a particular va
of the Rayleigh number~a dimensionless measure of th
temperature difference across the fluid! R5Rc . For values
of R slightly aboveRc the pattern is usually found to be
time independent state. However, if the convection appar
is now rotated about a vertical axis, Coriolis effects pertu
the fluid velocity, and above a critical rotation rateVc an
ideal pattern of straight convection rolls is predicted to b
come unstable via the ‘‘Kuppers-Lortz’’ instability@2#. The
nature of the instability is that the rolls become unsta
towards the growth of a second set of rolls with their a
rotated by an angleuKL from the axis of the original set o
rolls. The valueuKL depends on fluid properties, but for typ
1063-651X/2001/63~4!/045201~4!/$20.00 63 0452
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cal fluids is close to 60° at the onset of the instability. On
the second set of rolls grows to saturation replacing the
set, they in turn will become unstable towards rolls rota
through a furtheruKL , etc. It is predicted that there will be
no time independent saturated state even arbitrarily clos
onset. Experimentally the state of domain chaos is fou
consisting of domains of differently oriented rolls with
persistent dynamics of domains expanding at the expens
one ~or more! of the neighboring domains through the m
tion of the domain walls between them.

The domain chaos state is of particular interest sinc
survives down to the onset of the convective state, wh
theoretical treatment based on an expansion in the weak
linearity should be possible. Indeed, based on the appr
mation that the switching angle is exactly 60°, Tu and Cro
@3# developed a simple model of the domain chaos st
extending the earlier work of Busse and Heikes@4#. The
model is for the coupled dynamics of domains of rolls
only three orientations, characterized by three amplitu
Ai(x,y,t), i 51,3, giving the strengths of the three roll com
ponents at each point in space and time. The coupled am
tude equations they used~after appropriate rescaling of spac
and time coordinates to eliminate unimportant constan!
take the form

] tA15«A11]x1

2 A12~A1
21g1A2

21g2A3
2!A1 , ~1a!

] tA25«A21]x2

2 A22~A2
21g1A3

21g2A1
2!A2 , ~1b!

] tA35«A31]x3

2 A32~A3
21g1A1

21g2A2
2!A3 . ~1c!

Here the variablexi is the spatial coordinate in the directio
perpendicular to thei th set of rolls; the derivatives transvers
to these directions are of higher order. Although in gene
complex amplitudes should be used, Tu and Cross made
simplification of assuming theAi to be real. This correspond
to neglecting variations of the wave numbers of the ro
The parameter« measures the distance from onset@«5(R
2Rc)/Rc#, and is the small parameter of the expansion. T
constantsg1 andg2 determine the interaction between on
set of rolls and the set rotated through160° and 260°,
respectively. In the absence of rotation, clockwise and a
clockwise rotations are equivalent so thatg15g2 and in this
©2001 The American Physical Society01-1
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limit it is easily shown that Eqs.~1! are relaxational or ‘‘po-
tential’’ @5# so that persistent dynamics is impossible. T
rotation breaks this ‘‘chiral symmetry,’’ so thatg1Þg2 ,
and the equations are then no longer relaxational. Tu
Cross found numerically, for sufficiently differentg1 ,g2 , a
state of persistently dynamic domains.

The demonstration of theexistenceof the chaotic domain
state within Eq.~1!, and a simple scaling argument we no
present, gives immediatequantitative predictions for the
scaling of the size and lifetime of the domains with«. De-
fining scaled variables Xi5«1/2xi , Ti5«t, and Āi
5«21/2Ai , yields equations with no appearance of the p
rameter«. In these scaled variables the domain size and l
time are therefore« independent, leading to the prediction
a domain size or correlation lengthj of the state scaling a
«21/2 and a domain lifetime or correlation timet of the
dynamics scaling as«21 in the physical variables. This re
mains one of the few quantitative predictions for propert
of spatiotemporal chaos in an experimental dissipative s
tem far from equilibrium that has actually been tested exp
mentally. However, recent experiments@6# did not find the
predicted result. It is this important discrepancy that we
dress in the present paper.

The clear disagreement between the experiment and
theory is that in the experimentj22 and the domain switch
ing rateva5 t21 appear to remain finite as« approaches
zero, instead of going to zero linearly in«. If a power law
dependence on« is forced on the data, powers much smal
than 1 result. Based on numerical simulations of equati
showing domain chaos we suggest that this discrepancy
tween experiment and theory might be due to the~necessar-
ily ! finite size of the experimental system.

Our conclusion is based on the following. We find resu
for the correlation length in numerical simulations that ha
many of the same qualitative features as in the experim
In particular the measured correlation lengthjM ~using an
algorithm defined below that is the same as the one use
the experimental work! appears to remain finite approachin
the threshold. The flexibility of the numerical approach
lows us to investigate this behavior as a function of the
pect ratioG. We find that the data for differentG and differ-
ent « collapse onto a single form suggested by finite s
scaling

jM5j f ~j/G!, ~2!

with j}«21/2 the ‘‘ideal’’ correlation length following the
theoretical prediction. Our numerical data is consistent w
f (x)→const for smallx so that in large enough systems~or
for large enough«) the predicted dependence proportional
j;«21/2 would be found, whereasf (x)}x21 for largex, so
that in small systems~or for small«) the measured correla
tion length is proportional to the system size.

The equation we simulate is the partial differential equ
tion for a real fieldc(x,y,t) in a two-dimensional domain

] tc5«c1~¹211!2c2g1c31g2ẑ"“

3@~“c!2
“c#1g3“"@~“c!2

“c#, ~3!
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with boundary conditions

c5n̂"“c50 ~4!

on the boundary with normaln̂. This equation has been in
troduced previously to model domain chaos@7# with periodic
boundary conditions. Withg25g350 it is the well known
Swift-Hohenberg equation that has been much studied in
context of pattern formation@5#. The spatially uniform state
c50 becomes unstable to a stripe state with wave num
qc51 at«50, and for«.0 steady, stable, nonlinearly satu
rated stripe states may be found. In modeling a convec
system we can imaginec(x,y) as representing the temper
ture field across a midplane of the system, and the stripes
a section of the convection rolls. The second nonlinear te
in Eq. ~3!, with coefficientg2, is the all important term yield-
ing the breaking of the chiral symmetry induced by rotati
in the physical system, and so increasingg2 corresponds to
increasing rotation rate in the convection system. For su
ciently largeg2 the stripe state becomes unstable to a rota
set of stripes, as in the Kuppers-Lortz instability. The an
at which the new set of stripes occurs can be tuned with
parameterg3 @7#.

Although Eq.~3! is easier to evolve numerically than th
coupled equations for fluid velocity and temperature fields
a three-dimensional domain that give a complete descrip
of the convection system, the task remains challenging. T
is because we need to integrate the equation in a large
main and over long times. In fact, since we are interested
approaching the limit«→0 to uncover the scaling behavio
and, in this limit, the dynamics becomes very slow, exce
ingly long integration times are necessary. In addition,
model the experiment the domain must be circular, and
eliminate any bias towards a particular stripe orientation
use of circular polar coordinates to describe the geom
seems preferable.

To meet these numerical challenges we have develop
fully implicit method using a finite difference representati
of the differential operators on a polar coordinate mesh.
each time step the nonlinear Crank-Nicolson equations
the new value of the field are solved by Newton’s metho
The generalized minimal residual~GMRES! iterative method
@8#, preconditioned with the Bjo”rstad @9# fast direct bihar-
monic solver, is used to solve the linear problem within ea
Newton iteration. This method allowed large time stepsDt,
for example up to 100 at«50.01. A variable time stepping
algorithm was implemented to exploit this opportunit
based on a comparison of results with time stepsDt andDt/2
@10#. This time stepping should be compared with wh
might be obtained with a conventional semi-implicit metho
where the gradient terms in the nonlinear terms impos
stability limit on the possible time step determined by t
spatial mesh resolution. This limitation is particularly seve
using polar coordinates since the mesh spacing in the
muthal direction becomes very small near the polar origin
practice we found a time step limited toDt,0.1 at «
50.01 using a conventional semi-implicit code, a factor
1000 smaller than in the fully implicit code.
1-2
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The polar mesh induces an artificial singularity in the d
scription at the origin of the circle where the physical beh
ior will be smooth. This difficulty has plagued the develo
ment of many codes based on polar coordinates. To tes
accuracy of our code in the vicinity of the origin we sim
lated Eq.~3! with g15g250 starting with an initial condi-
tion of straight stripes. With these parameters the stripe s
is unstable to a square pattern. For an initial condition tha
exactly a stripe state, the development of squares can ph
cally only be initiated at the boundary, and the square pat
should then be observed to propagate in from the bounda
With inadequate spatial resolution we found instead t
squares also began to grow via nucleation around the or
presumably an artifact of the reduced accuracy of the
merical integration here. This unphysical result could be
fectively eliminated by increasing the number of radial me
points ~as mentioned above, the azimuthal resolution fo
fixed number of azimuthal points becomes very fine near
origin!. To take the best advantage of the computer resou
we used avariable mesh in the radial direction, with th
resolution increasing smoothly to a factor of 2 or 3 improv
ment over the inner third of the radial direction. It should
noted that these test runs use the exponential amplifica
due to a physical instability~stripes to squares! acting over a
long time ~e.g., a time of 100! to enhance the effects o
numerical inaccuracies to visible amplitudes. Thus the eli
nation of visible spurious effects near the origin in these
runs gives us confidence in the accuracy of the numer
procedure.

To study domain chaos we simulated Eq.~3! with fixed
values of the nonlinear coefficientsg151, g2522.60, and
g351.5 corresponding to a Kuppers-Lortz instability at
angle of 60° @7#. We studied the behavior for values of«
between 0.01 and 0.3 and in circular geometries with ra
30p, 40p, 50p, and 80p, corresponding to aspect ratios
30280 in the experimental system. Snapshots of the fi
c(x,y) from two runs are shown in Fig. 1. Notice the depe
dence of the domain size on the control parameter«, and the
comparable values of domain and system sizes at the sm
value of«.

The quantitative diagnostics of the state are based on
Fourier transformc̃(k… using a Hanning window over a
inscribed square, following the same approach as in the
periments@11#. The intensityS(k)5uc̃(k)u2 is found to be
concentrated on a ring in Fourier space neark51 corre-
sponding to the stripe periodicity of 2p. The intensity varies
with the angle around this ring, corresponding to the vary
representation of domains of different stripe orientations
the pattern. This angular distribution varies with time as
domains evolve, and can be used to define the switching
va . The correlation length of the pattern is defined as
average width of the ring in Fourier spacejM5@^k2&
2^k&2#21/2, with

^kn&5K E knS~k!d2k

E S~k!d2k
L

t

, ~5!
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where^& t denotes a time average.
Results for the correlation length are shown in Fig. 2.

in the experiments the inverse of the measured correla
lengthjM

21 appears to remain nonzero at onset, and the d
are reasonably well fit by a formjM

21;A«2«0 rather than
the expectedA« dependence. The dependence of«0 we find
on the aspect ratio suggests that this might be understoo
a finite size effect. This is confirmed by the scaling p
motivated by Eq.~2!, which suggests that a plot of«21/2/jM
against«21/2/G should collapse the data. The successful c
lapse is shown in Fig. 3. Note that for small values
«21/2/G ~i.e., largeG or «) the value of«21/2/jM approaches
a constant corresponding to the theoretical expectation
large enough systems. On the other hand for large«21/2/G
the curve approached a linear behavior consistent with
correlation length scaling simply with the aspect ratio,jM
.G/2.8. Note that the finite size corrections become imp
tant ~e.g., identified as the intersection point of the straig

FIG. 1. Snapshots of the dynamic domain configuration at t
values of the control parameter~a! «50.01 and~b! «50.3. The
aspect ratio is 40p.

FIG. 2. Inverse measured correlation lengthjM
21 as a function of

control parameter« for various aspect ratiosG. The lines are fits of
the formjM

215a(«2«0)1/2.
1-3
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lines in Fig. 3 forG<3j, with an additional factor of 3 ove
the naive expectation.

In the experimental work there has been no system
attempt to study the dependence on aspect ratio, whic
much harder to do experimentally than numerically. The
periments did investigate the dependence of the correla
length on the rotation rate, and found that the measured
relation lengths at different rotation rates could be related
an «-independent scale factor:j(«,V).j0(V) f («). Since
the deviation from the expected«21/2 behavior found inf («)
is common to all the runs at differentV, this scaling does no
shed light on the basic discrepancy with the predicted«21/2

scaling, however.
We have also studied the behavior of the switching f

quencyva on «. Here, unlike the experiment, we find goo
agreement with the predictionva}« for small«. This result

FIG. 3. Plot of the inverse correlation lengthjM
21 scaled with

«21/2 against the inverse aspect ratioG21 scaled by«21/2 showing
the collapse of data for different« andG onto a single curve. The
solid line is a fit to the empirical formy5Aa21b2x2 yielding a
50.091 andb52.8. The dashed lines show the asymptotic limits
this fit.
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is not surprising for simulations of Eqs.~3! and~4!, since in
these equations the effects of the rotationonly appear in the
nonlinear terms, which become small for«→0. A careful
analysis of the fluid equations shows that in a complete
scription there are alsolinear terms depending on the rota
tion that become important near the boundaries where
fluid state is strongly perturbed from the convection r
state. This means that in a finite physical system the ons
actually a Hopf bifurcation~with the onset frequency going
to zero for large aspect ratios! and so it is not surprising tha
va remains nonzero at onset in experiment. These effects
not captured by the equations~3! and ~4! we simulate: they
can in fact be captured using modified boundary conditio
@12#. However, these complicated boundary conditions m
the numerical scheme considerably harder, and we have
modified our code to investigate them.

In conclusion, our numerical simulations of model equ
tions for rotating Rayleigh-Be´nard convection show result
for the correlation length near threshold that show qualitat
similarities to the experimental results. A finite size scali
ansatz shows that our measured lengths are in fact consi
with the expected«21/2 divergence near threshold, but th
the finite system size obscures this dependence. It will
interesting to see if this result can be confirmed experim
tally, or in simulations of the full fluid and heat equations f
convection that we are currently pursuing. It is notewort
that similar predictions for a diverging correlation time ne
threshold in electroconvection spatiotemporal chaos have
cently been verified experimentally@13# . In this system
larger aspect ratios are accessible so that finite size eff
should not be important.

This work was partially supported by the Division o
Materials Science and Engineering of Basic Energy Scien
at the Department of Energy, Grant No. DE-FG0
98ER14891.
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