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Finite size scaling of domain chaos
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Numerical studies of the domain chaos state in a model of rotating Rayl€igir@eonvection suggest that
finite size effects may account for the discrepancy between experimentally measured values of the correlation
length and the predicted divergence near onset.
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Spatiotemporal chaos is the name given to states in driveaal fluids is close to 60° at the onset of the instability. Once
nonequilibrium systems that are disordered in space anthe second set of rolls grows to saturation replacing the first
show chaotic time dynamics. The usual diagnostic tools deset, they in turn will become unstable towards rolls rotated
veloped for chaotic dynamics in nonlinear systems with fewthrough a furthery , etc. It is predicted that there will be
dynamical degrees of freedom focus on the geometricalO time independent saturated state even arbitrarily close to
structures in the phase space of the dynamics. These largedpset. Experimentally the state of domain chaos is found,
lose their appeal for the very high dimensional dynamicalconsisting of domains of differently oriented rolls with a
systems of spatiotemporal chaos. The questions of how tgersistent dynamics of domains expanding at the expense of
characterize, understand, and predict the properties of sp@ne (or morg of the neighboring domains through the mo-
tiotemporally chaotic systems remain poorly understood, detion of the domain walls between them.
spite much experimental and theoretical attention over the The domain chaos state is of particular interest since it
past decade. Given this lack of understanding it is importangurvives down to the onset of the convective state, where
to study systems which are favorable for both experimentaiheoretical treatment based on an expansion in the weak non-
and theoretical study, and in particular ones where theoretiinearity should be possible. Indeed, based on the approxi-
cal predictions can be made and tested experimentally. Imation that the switching angle is exactly 60°, Tu and Cross
this Rapid Communication we present results that further thé3] developed a simple model of the domain chaos state,
comparison between theory and experiment for the statéxtending the earlier work of Busse and Heikéd. The
known as domain chad4] in rotating Rayleigh-Beard con- model is for the coupled dynamics of domains of rolls at
vection. only three orientations, characterized by three amplitudes

Rayleigh-Baard convection has long served as a canoniAi(x,y,t), i=1,3, giving the strengths of the three roll com-
cal example of pattern formation in systems far from equi-ponents at each point in space and time. The coupled ampli-
librium. A fluid confined between two horizontal plates and tude equations they usedfter appropriate rescaling of space
driven thermally by maintaining the bottom plate at a higherand time coordinates to eliminate unimportant consjants
temperature than the top plate undergoes an instability to #@ke the form
state in which there is fluid motion driven by the buoyancy

forces induced by the thermal expansion. Far away from lat- hA1=eAt 5§1A1— (Ai+0.AS+g_ADA,, (1a
eral boundaries the structure of the fluid motion locally
forms the familiar convection rolls with a diameter close to 9 A= eA,+ (9>2<2A2—(A§+9+A§+97A§)A2, (1b)

the depth of the cell. This spontaneous formation of spatial
structure in a uniformly driven system is known as pattern 5 5 ’ )
formation. GAs=eAgt Iy As— (A3+ 0 AT+HG-AYDA;. (10
The instability to the roll state occurs at a particular value
of the Rayleigh numbefa dimensionless measure of the Here the variable; is the spatial coordinate in the direction
temperature difference across the fluRl=R.. For values perpendicular to theth set of rolls; the derivatives transverse
of R slightly aboveR, the pattern is usually found to be a to these directions are of higher order. Although in general
time independent state. However, if the convection apparatusomplex amplitudes should be used, Tu and Cross made the
is now rotated about a vertical axis, Coriolis effects perturbsimplification of assuming th4; to be real. This corresponds
the fluid velocity, and above a critical rotation reffle. an  to neglecting variations of the wave numbers of the rolls.
ideal pattern of straight convection rolls is predicted to be-The parametee measures the distance from onget= (R
come unstable via the “Kuppers-Lortz” instabilifi2]. The  —R.)/R.], and is the small parameter of the expansion. The
nature of the instability is that the rolls become unstableconstantgy, andg_ determine the interaction between one
towards the growth of a second set of rolls with their axisset of rolls and the set rotated through60° and —60°,
rotated by an angl@y, from the axis of the original set of respectively. In the absence of rotation, clockwise and anti-
rolls. The valuedyx, depends on fluid properties, but for typi- clockwise rotations are equivalent so tat=g_ and in this

1063-651X/2001/6@})/0452014)/$20.00 63 045201-1 ©2001 The American Physical Society



RAPID COMMUNICATIONS

M. C. CROSS, M. LOUIE, AND D. MEIRON PHYSICAL REVIEW B3 045201R)

limit it is easily shown that Eqg1) are relaxational or “po-  with boundary conditions
tential” [5] so that persistent dynamics is impossible. The
rotation breaks this “chiral symmetry,” so thaf, #g9_, - (4)
and the equations are then no longer relaxational. Tu and
Cross found numerically, for sufficiently differegt, ,g_, a
state of persistently dynamic domains. on the boundary with normai. This equation has been in-
The demonstration of thexistenceof the chaotic domain troduced previously to model domain cha@$with periodic
state within Eq.(1), and a simple scaling argument we now boundary conditions. Witly,=g;=0 it is the well known
present, gives immediatguantitative predictions for the Swift-Hohenberg equation that has been much studied in the
scaling of the size and lifetime of the domains withDe-  context of pattern formatiof6]. The spatially uniform state
fining scaled variables X;=¢Y%;, T;=e¢t, and KI =0 becomes unstable to a stripe state with wave number
=g 27, yields equations with no appearance of the pad.=1 ate=0, and fore>0 steady, stable, nonlinearly satu-
rametere. In these scaled variables the domain size and lifefated stripe states may be found. In modeling a convection
time are therefore independent, leading to the prediction of System we can imaging(x,y) as representing the tempera-
a domain size or correlation lengthof the state scaling as ture field across a midplane of the system, and the stripes are
¢ Y2 and a domain lifetime or correlation time of the @ section of the convection rolls. The second nonlinear term
dynamics scaling as~* in the physical variables. This re- in Eq.(3), with coefficientg,, is the all important term yield-
mains one of the few quantitative predictions for propertiednd the breaking of the chiral symmetry induced by rotation
of spatiotemporal chaos in an experimental dissipative sygh the physical system, and so increasmgcorresponds to
tem far from equilibrium that has actually been tested experiincreasing rotation rate in the convection system. For suffi-
mentally. However, recent experimeni&) did not find the  ciently largeg, the stripe state becomes unstable to a rotated
predicted result. It is this important discrepancy that we adset of stripes, as in the Kuppers-Lortz instability. The angle

dress in the present paper. at which the new set of stripes occurs can be tuned with the
The clear disagreement between the experiment and tHgarametegs [7]. . _ _
theory is that in the experimeit > and the domain switch- ~ Although Eq.(3) is easier to evolve numerically than the

ing ratew,= 7 * appear to remain finite as approaches coupled equations for fluid velocity and temperature fields in
zero, instead of going to zero linearly in If a power law @ three-dimensional domain that give a complete description
dependence oa is forced on the data, powers much smallerof the convection system, the task remains challenging. This
than 1 result. Based on numerical simulations of equationt because we need to integrate the equation in a large do-
showing domain chaos we suggest that this discrepancy p&ain and over long times. In fact, since we are interested in
tween experiment and theory might be due to (thecessar- approaching the limit—0 to uncover the scaling behavior,
ily) finite size of the experimental system. and, in this limit, the dynamics becomes very slow, exceed-
Our conclusion is based on the following. We find resultsingly long integration times are necessary. In addition, to
for the correlation length in numerical simulations that havemodel the experiment the domain must be circular, and to
many of the same qualitative features as in the experimengliminate any bias towards a particular stripe orientation the
In particular the measured correlation lengt (using an  use of circular polar coordinates to describe the geometry
algorithm defined below that is the same as the one used #eems preferable.
the experimental wobkappears to remain finite approaching ~ To meet these numerical challenges we have developed a
the threshold. The flexibility of the numerical approach al-fully implicit method using a finite difference representation
lows us to investigate this behavior as a function of the asof the differential operators on a polar coordinate mesh. At
pect ratiol'. We find that the data for differeit and differ- ~ €ach time step the nonlinear Crank-Nicolson equations for

ent & collapse onto a single form suggested by finite sizethe new value of the field are solved by Newton’s method.
scaling The generalized minimal residuétMRES) iterative method

[8], preconditioned with the Bjstad[9] fast direct bihar-
En=Ef(EIT), (2)  monic solver, is used to solve the linear problem within each
Newton iteration. This method allowed large time stéyis
with £xce ™2 the “ideal” correlation length following the for example up to 100 at=0.01. A variable time stepping
theoretical prediction. Our numerical data is consistent witi@lgorithm was implemented to exploit this opportunity,
f(x)—const for smalix so that in large enough systerfe ~ based on a comparison of results with time stépandAt/2
for large enougtz) the predicted dependence proportional to[10]. This time stepping should be compared with what
é~¢e 12 would be found, whereal(x)=x ! for largex, so  Might be obtained with a conventional semi-implicit method,
that in small systeméor for smalle) the measured correla- Where the gradient terms in the nonlinear terms impose a
tion |ength iS proportiona' to the System Size_ Stablllty limit on the pOSSible time Step determined by the
The equation we simulate is the partial differential equa-SPatial mesh resolution. This limitation is particularly severe

tion for a real fieldy(x,y,t) in a two-dimensional domain ~ Using polar coordinates since the mesh spacing in the azi-
muthal direction becomes very small near the polar origin. In

gb=s+(V2+1) 24— 34 0.2V practice we found a time step limited tat<0.1 at e
W=yt )0 022 =0.01 using a conventional semi-implicit code, a factor of
X[(V) 2V ]+ g3V (Vi) 2V ], 3 1000 smaller than in the fully implicit code.
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The polar mesh induces an artificial singularity in the de-
scription at the origin of the circle where the physical behav-
ior will be smooth. This difficulty has plagued the develop-
ment of many codes based on polar coordinates. To test the
accuracy of our code in the vicinity of the origin we simu-
lated Eq.(3) with g;=g,=0 starting with an initial condi-
tion of straight stripes. With these parameters the stripe state
is unstable to a square pattern. For an initial condition that is
exactly a stripe state, the development of squares can physi-
cally only be initiated at the boundary, and the square pattern
should then be observed to propagate in from the boundaries.
With inadequate spatial resolution we found instead that
squares also began to grow via nucleation around the origin,
presumably an artifact of the reduced accuracy of the nu-
merical integration here. This unphysical result could be ef-
fectively eliminated by increasing the number of radial mesh
points (as mentioned above, the azimuthal resolution for a
fixed number of azimuthal points becomes very fine near the
origin). To take the best advantage of the computer resources
we used avariable mesh in the radial direction, with the
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resolution increasing smoothly to a factor of 2 or 3 improve-  FiG. 1. Snapshots of the dynamic domain configuration at two
ment over the inner third of the radial direction. It should beyalues of the control parametéa) £ =0.01 and(b) £=0.3. The

noted that these test runs use the exponential amplificatiogspect ratio is 48.
due to a physical instabilitystripes to squargscting over a

long time (e.g., a time of 10pto enhance the effects of where(); denotes a time average.
numerical inaccuracies to visible amplitudes. Thus the elimi- Results for the correlation length are shown in Fig. 2. As
nation of visible spurious effects near the origin in these tesin the experiments the inverse of the measured correlation
runs gives us confidence in the accuracy of the numericakngth ¢,,' appears to remain nonzero at onset, and the data
procedure. . _ - are reasonably well fit by a forréy,,*~ e — ¢, rather than

To study domain chaos we simulated E8) with fixed  yhe expected/s dependence. The dependences give find
values of the nonlinear coefficiengg=1, g,=—2.60, and o the aspect ratio suggests that this might be understood as
gs=1.5 corresponding to a Kuppers-Lortz instability at ang finjte size effect. This is confirmed by the scaling plot
angle of 60°[7]. We studied the behavior for values of 1 qtivated by Eq(2), which suggests that a plot ef ¥%¢,,
between 0.01 and 0.3 and in circular geometries with radi;‘againsts‘l’zlr should collapse the data. The successful col-
30w, 40w, 50w, and 8Gr, corresponding to aspect ratios of |apse is shown in Fig. 3. Note that for small values of
30—-80 in the experimental system. Snapshots of the field, -1 (i.e., largel or &) the value ofs ~1/2/¢,, approaches
¢(x,y) from two runs are shown in Fig. 1. Notice the depen-5 constant corresponding to the theoretical expectation for
dence of the domain size on the control parametend the large enough systems. On the other hand for larg&?4T
comparable values of domain and system sizes at the smallgfe curve approached a linear behavior consistent with the
value ofe. o . ) correlation length scaling simply with the aspect ratfg,

The quantitative diagnostics of the state are based on the /2 8. Note that the finite size corrections become impor-
Fourier transformy(k) using a Hanning window over an tant (e.g., identified as the intersection point of the straight

inscribed square, following the same approach as in the ex-

periments[11]. The intensityS(k)=|v(k)|? is found to be 0.06 —

concentrated on a ring in Fourier space nkarl corre-
sponding to the stripe periodicity ofi2 The intensity varies I
with the angle around this ring, corresponding to the varying 0.04
representation of domains of different stripe orientations in

the pattern. This angular distribution varies with time as the ”:v‘g
domains evolve, and can be used to define the switching rate 0.02 ’
w,. The correlation length of the pattern is defined as the T
average width of the ring in Fourier spacg,=[(k?)
— (k)17 2, with - . .
00 0.1 0.2 0.3
f K'S(k)d%k &
(k"= , (5) FIG. 2. Inverse measured correlation lengfft as a function of
f S(k) d2k control pa[amete.t for various aspect ratids. The lines are fits of
¢ the form ¢yt =a(e —g0)*2
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i T T is not surprising for simulations of Eq&3) and(4), since in
0.3 2 Ejgz vl these equations the effects of the rotattny appear in the
S ol nonlinear terms which become small foe—0. A careful
- v T=80n ol analysis of the fluid equations shows that in a complete de-
P 021 gt ] scription there are alslinear terms depending on the rota-
o [ peal ] tion that become important near the boundaries where the
w 1) e L ] fluid state is strongly perturbed from the convection roll
[ 7 ] state. This means that in a finite physical system the onset is
[ -7 ] actually a Hopf bifurcatioriwith the onset frequency going
00 — '0_(')5 — o '10' to zero for large aspect ratipand so it is not surprising that

w, remains nonzero at onset in experiment. These effects are
e not captured by the equatiorf8) and (4) we simulate: they

FIG. 3. Plot of the inverse correlation lengéh,' scaled with can in fact be captured using modified boundary_ _Conditions
£~ 12 against the inverse aspect ralio * scaled bys~¥2showing ~ [12]. However, these complicated boundary conditions make
the collapse of data for differert andI" onto a single curve. The the numerical scheme considerably harder, and we have not
solid line is a fit to the empirical forny=\aZ+b%x? yieldinga  Mmodified our code to investigate them.
=0.091 anch=2.8. The dashed lines show the asymptotic limits of ~ In conclusion, our numerical simulations of model equa-
this fit. tions for rotating Rayleigh-Beard convection show results
for the correlation length near threshold that show qualitative
similarities to the experimental results. A finite size scaling
ansatz shows that our measured lengths are in fact consistent

P -1/2 ;i
In the experimental work there has been no systemati ith _th_e expecte(t_ divergence nhear threshold, but t_hat
e finite system size obscures this dependence. It will be

attempt to study the dependence on aspect ratio, which Interesting to see if this result can be confirmed experimen-

much harder to do experimentally than numerically. The ex_Fﬁlly, or in simulations of the full fluid and heat equations for

periments did investigate the dependence of the correlatio . X )
length on the rotation rate, and found that the measured co -onvection that we are currently pursuing. It is noteworthy

. : . hat similar predictions for a diverging correlation time near
relation lengths at different rotation rates could be related b¥hresh0| d inpelectroconvection spagtiotgemporal chaos have re-
an e-independent scale facto€(e,)=¢&,(Q2)f(e). Since

the deviation from the expected 2 behavior found irf (<) cently been Ve”f'ed expenmentall&ts] - In .th.'s system
. ) . . larger aspect ratios are accessible so that finite size effects
is common to all the runs at differefi, this scaling does not

shed light on the basic discrepancy with the predicted? should not be important.

scaling, however. This work was partially supported by the Division of
We have also studied the behavior of the switching fre-Materials Science and Engineering of Basic Energy Sciences

qguencyw, on . Here, unlike the experiment, we find good at the Department of Energy, Grant No. DE-FGO03-

agreement with the prediction,cce for smalle. This result 98ER14891.

lines in Fig. 3 forl'= 3¢, with an additional factor of 3 over
the naive expectation.
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